Critical slope for laminar transcritical shallow-water flows
نویسندگان
چکیده
منابع مشابه
Critical controls in transcritical shallow-water flow over obstacles
The nonlinear shallow-water equations are often used to model flow over topography In this paper we use these equations both analytically and numerically to study flow over two widely separated localised obstacles, and compare the outcome with the corresponding flow over a single localised obstacle. Initially we assume uniform flow with constant water depth, which is then perturbed by the obsta...
متن کاملNonclassical Shallow Water Flows
This paper deals with violent discontinuities in shallow water flows with large Froude number F . On a horizontal base, the paradigm problem is that of the impact of two fluid layers in situations where the flow can be modelled as two smooth regions joined by a singularity in the flow field. Within the framework of shallow water theory we show that, over a certain timescale, this discontinuity ...
متن کاملTranscritical shallow-water flow past topography: finite-amplitude theory
We consider shallow-water flow past a broad bottom ridge, localized in the flow direction, using the framework of the forced Su–Gardner (SG) system of equations, with a primary focus on the transcritical regime when the Froude number of the oncoming flow is close to unity. These equations are an asymptotic long-wave approximation of the full Euler system, obtained without a simultaneous expansi...
متن کاملNovel Slope Source Term Treatment for Preservation of Quiescent Steady States in Shallow Water Flows
This paper proposes a robust method for modeling shallow-water flows and near shore tsunami propagation, applicable for both simple and complex geometries with uneven beds. The novel aspect of the model includes the introduction of a new method for slope source terms treatment to preserve quiescent equilibrium over uneven topographies, applicable to both structured and unstructured mesh systems...
متن کاملResidual Distribution for Shallow Water Flows
The residual distribution framework was developed as an alternative to the finite volume approach for approximating hyperbolic systems of conservation laws which would allow a natural representation of genuinely multidimensional flow features. The resulting algorithms are closely related to conforming finite elements, but their structure makes it far simpler to construct nonlinear approximation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2015
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2015.559